Prioritizing the retention of border zones in production forests: The projected benefits for Swedish broadleaf habitats
##plugins.themes.bootstrap3.article.main##
Keywords:
Abstract
Swedish forestry is characterized by relatively intensive silvicultural practices primarily focused on the rotational even-aged management of Norway spruce and Scots pine. The diversification of these management practices, via the increased use of mixed forests and broadleaves, is a recommended means of promoting biodiversity conservation and reducing climate change-related risks. One complementary and underexplored pathway to diversifying production forest landscapes is to increase the ecological quality of retention patches at final felling. Recent studies indicate that border zones towards water, arable land and other land uses have a higher share of broadleaves and, together with other functions, should be prioritized for retention. This study investigates the benefits of prioritizing the retention of these ecological transition zones at final felling in a typical southern Swedish region, focusing on the amount of broadleaves retained. With input from a key regional actor in nature conservation (the County Administrative Board), two different retention scenarios were simulated: Retention patches representative of average stand conditions (AveCOND) and border zones (BORDER). The forest data, sourced from remote sensing, indicated that border zones towards open land and water had a higher volume share of broadleaves than the average found on productive forestland (> 1 m3/ha/year) in the study region. Simulating the development of the landscape over a 100-year period and prioritizing the retention of border zones increased the share of broadleaves over time. Since only a limited share of the total forest area is subject to retention, 8% in our study, the advantage of BORDER over AveCOND is not dramatic; BORDER yields 50 m3 broadleaves per ha compared to 47 m3 for AveCOND after 50 years and 47 compared to 43 after 100 years. In the study, retention patches and border zones were left with no management. Active management to promote broadleaf trees using targeted thinning regimes could add to the ecosystem's provision of border zones relative to no management. The economic outcome suggests that allocating retention to border zones could be advantageous compared with allocation to the harvesting site. However, this result hinges very much on what, in reality, is attained in the BORDER case. Another aspect refers to the unevenly distributed border zones among forest properties. Thus, retaining all border zones would require some landscape approach. We discuss various barriers and opportunities to implementing this retention strategy, for which our findings suggest multiple conservation benefits exist.
Downloads
##plugins.themes.bootstrap3.article.details##
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal the right of first publication with the work simultaneously licenced under a Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in the journal. The journal retains no copyright.
Andersson E, Andersson M, Birkne Y, Claesson S, Forsberg O, Lundh G. 2013. Target goals for good environmental consideration. A part delivery from Dialog om Miljöhänsyn. Swedish Forest Agency, Report 5, Jönköping, Sweden, (In Swedish).
Appelstrand M. 2012. Developments in Swedish forest policy and administration - from a "policy of restriction" toward a "policy of cooperation". Scandinavian Journal of Forest Research 27, 186-199. https://doi.org/10.1080/02827581.2011.635069
Beland Lindahl K, Sténs A, Sandström C, Lidskog R, Ranius T, Roberge J-M. 2017. The Swedish forestry model: More of everything? Forest Policy and Economics 77, 44-55. https://doi.org/10.1016/j.forpol.2015.10.012
Berglund H, Kuuluvainen T. 2021. Representative boreal forest habitats in northern Europe, and a revised model for ecosystem management and biodiversity conservation. Ambio 50: 1003-1017.
https://doi.org/10.1007/s13280-020-01444-3
Branquart E, Verheyen K, Latham J. 2008. Selection criteria of protected forest areas in Europe: the theory and the real world. Biological Conservation 141:2795-2806. https://doi.org/10.1016/j.biocon.2008.08.015
Brockerhoff EG, Barbaro L, Castagneyrol B, Forrester DI, Gardiner B, González-Olabarria JR, Lyver POB, Meurisse N, Oxbrough A, Taki H, Thompson ID, van der Plas F, Jactel H. 2017. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation 26:3005-3035.
https://doi.org/10.1007/s10531-017-1453-2
Brukas V, Felton A, Lindbladh M, Sallnäs O. 2013. Linking forest management, policy and biodiversity indicators - A comparison of Lithuania and southern Sweden. Forest Ecology and Management 291, 181-189. https://doi.org/10.1016/j.foreco.2012.11.034
Brukas V, Thorsen BJ, Helles F, Tarp P. 2001. Discount rate and harvest policy: implications for Baltic forestry. Forest policy and economics, 2(2), 143-156. https://doi.org/10.1016/S1389-9341(01)00050-8
Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM. 2015. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science advances 1:e1400253. https://doi.org/10.1126/sciadv.1400253
Dahlström N, Nilsson C. 2006. The dynamics of coarse woody debris in boreal Swedish forests are similar between stream channels and adjacent riparian forests. Canadian Journal of Forest Research 36, 1139-1148.
https://doi.org/10.1139/x06-015
Dynesius M, Hylander K. 2007. Resilience of bryophyte communities to clear-cutting of boreal stream-side forests. Biological Conservation 135, 423-434. - Sid 6. https://doi.org/10.1016/j.biocon.2006.10.010
Elfving B, Jakobsson R. 2006. Effects of retained trees on tree growth and field vegetation in Pinus sylvestris stands in Sweden. Scandinavian Journal of Forest Research 21, 29-36. https://doi.org/10.1080/14004080500487250
Essen P-A, Hedström Ringvall A, Harper KA, Christensen P, Svensson J. 2016. Factors driving structure of natural and anthropogenic forest edges from temperate to boreal ecosystems. Journal of vegetation science, 27, 482-492.
https://doi.org/10.1111/jvs.12387
FAO (Food and Agriculture Organisation). 2020. Global Forest Resources Assessment: Main report. Rome.
Felton A, Belyazid S, Eggers E, Nordström M, Öhman K. 2024. Climate change adaptation and mitigation strategies for production forests: Trade-offs, synergies, and uncertainties in biodiversity and ecosystem services delivery in Northern Europe. Ambio 53: 1-16. https://doi.org/10.1007/s13280-023-01909-1
Felton A, Löfroth T, Angelstam P, Gustafsson K, Hjältén J, Felton AM, Simonsson P, Dahlberg A, Lindbladh M, Svensson J, Nilsson U, Lodin I, Hedwall PO, Sténs A, Lämås T, Brunet J, Kalén C, Kriström B, Gemmel P, Ranius T. 2020. Keeping pace with forestry: Multi-scale conservation in a changing production forest matrix. Ambio. https://doi.org/10.1007/s13280-019-01248-0
Felton A, Gustafsson L, Roberge J-M, Ranius T, Hjältén J, Rudolphi J, Lindbladh M, Weslien J, Rist L, Brunet J. 2016. How climate change adaptation and mitigation strategies can threaten or enhance the biodiversity of production forests: Insights from Sweden. Biol. Conserv. 2016, 194, 11-20, doi:10.1016/j.biocon.2015.11.030.
Felton A, Lindbladh M, Brunet J, Fritz Ö. 2010. Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe. Forest Ecology and Management 260: 939-947. https://doi.org/10.1016/j.foreco.2010.06.011
Fries C, Carlsson M, Dahlin B, Lämås T, Sallnäs O. 1998a. A review of conceptual landscape planning models for multiobjective forestry in Sweden. Canadian Journal of Forest Research 28, 159-167. https://doi.org/10.1139/x97-204
Fries C, Lindén G, Nillius E. 1998b. The stream model for ecological landscape planning in non‐industrial private forestry. Scandinavian Journal of Forest Research 13, 370-378. https://doi.org/10.1080/02827589809382996
Fry G, Sarlöv-Herlin I. 1997. The ecological and amenity functions of woodland edges in the agricultural landscape; a basis for design and management Landscape and Urban planning 37, 45-55.
https://doi.org/10.1016/S0169-2046(96)00369-6
FSC 2024. The FSC National Forest Stewardship Standard of Sweden. https://se.fsc.org/se-sv/regler/skogsbruksstandard (accessed 9 September 2024).
Grönlund Ö, Erlandsson E, Djupström L, Bergström D, Eliasson L. 2020. Nature conservation management in voluntary set-aside forests in Sweden: practices, incentives and barriers. Scandinavian Journal of Forest Research, 1-12. https://doi.org/10.1080/02827581.2020.1733650
Gundersen P, Laurén A, Finér L, Ring E, Koivusalo H, Sætersdal M, Weslien J-O, Sigurdsson BD, Högbom L, Laine J, Hansen K. 2010. Environmental services provided from riparian forests in the Nordic countries. Ambio 39, 555-566. https://doi.org/10.1007/s13280-010-0073-9
Gustafsson L, Hannerz M, Koivula M, Shorohova E, Vanha-Majamaa I, Weslien J. 2020. Research on retention forestry in Northern Europe. J Ecological Processes, 9, 1-13. https://doi.org/10.1186/s13717-019-0208-2
Gustafsson L, Bauhus J, Kouki J, Lõhmus A, Sverdrup-Thygeson A. 2013. 1.6 Retention forestry: an integrated approach in practical use. Integrative approaches as an opportunity for the conservation of forest biodiversity, 74.
Gustafsson L, Baker SC, Bauhus J, Beese WJ, Brodie A, Kouki J, Lindenmayer DB, Lõhmus A, et al. 2012. Retention forestry to maintain multifunctional forests: A world perspective. BioScience 62: 633-645.
https://doi.org/10.1525/bio.2012.62.7.6
Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD. 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances 1:e1500052. https://doi.org/10.1126/sciadv.1500052
Hågvar S, Nygaard P, Bækken BT. 2004. Retention of forest strips for bird-life adjacent to water and bogs in Norway; effect of different widths and habitat variables. Scandinavian Journal of Forest Research 19, 452-465. https://doi.org/10.1080/02827580410019427
Haugen K, Karlsson S, Westin K. 2016. New forest owners: Change and continuity in the characteristics of Swedish non-industrial private forest owners (NIPF Owners) 1990-2010. Small-scale Forestry 15, 533-550. https://doi.org/10.1007/s11842-016-9338-x
Heureka. 2019. Heureka Wiki. Swedish University of Agricultural Sciences. Available online: https://www.heurekaslu.se/wiki/Main_Page (accessed 16 August 2019).
Hylander K, Weibull H. 2012. Do time-lagged extinctions and colonizations change the inteNoEdgeetation of buffer strip effectiveness? - a study of riparian bryophytes in the first decade after logging. Journal of Applied Ecology. 49, 13161324. - Sid 11. https://doi.org/10.1111/j.1365-2664.2012.02218.x
Hylander K, Nilsson C, Göthner T. 2004. Effects of bufferstrip retention and clearcutting on land snails in boreal riparian forests. Conservation Biology 18(4), 1052-1062. - Sid 8. https://doi.org/10.1111/j.1523-1739.2004.00199.x
Hylander K, Jonsson BG, Nilsson C. 2002. Evaluating buffer strips along boreal streams using bryophytes as indicators. Ecological Applications 12(3), 797-806. - Sid 7.
https://doi.org/10.1890/1051-0761(2002)012[0797:EBSABS]2.0.CO;2
IPBES. 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services - Advance unedited version. Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, https://www.ipbes.net/sites/default/files/downloads/spm_unedited_advance_for_posting_htn.pdf.
IPCC. 2023. Summary for policymakers. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 1-34.
https://doi.org/10.59327/IPCC/AR6-9789291691647.001
Johansson V, Wikström C-J, Hylander K. 2018. Time-lagged lichen extinction in retained buffer strips 16.5 years after clear-cutting. Biological Conservation 225: 53-65. https://doi.org/10.1016/j.biocon.2018.06.016
Jones KR, Venter O, Fuller RA, Allan JR, Maxwell SL, Negret PJ, Watson JE. 2018. One-third of global protected land is under intense human pressure. Science 360: 788-791. https://doi.org/10.1126/science.aap9565
Kuglerová L, Ågren A, Jansson R, Laudon H. 2014. Towards optimizing riparian buffer zones: Ecological and biogeochemical implications for forest management. Forest Ecology and Management, 334, 74-78. https://doi.org/10.1016/j.foreco.2014.08.033
Lämås T, Sängstuvall L, Öhman K, Lundström J, Årevall J, Holmström H, ... and Eggers J. 2023. The multi-faceted Swedish Heureka forest decision support system: context, functionality, design, and 10 years experiences of its use. Frontiers in Forests and Global Change, 6, 1163105. https://doi.org/10.3389/ffgc.2023.1163105
Lindbladh M, Axelsson A-L, Hultberg T, Brunet J, Felton A. 2014. From broadleaves to spruce - the borealization of southern Sweden. Scandinavian Journal of Forest Research 29, 686-696. https://doi.org/10.1080/02827581.2014.960893
Lindenmayer DB, Franklin JF, Lohmus A, Baker SC, Bauhus J, Beese W, Brodie A, Kiehl B, Kouki J, Martinez Pastur G, Messier C, Neyland M, Palik B, Sverdrup-Thygeson A, Volney J, Wayne A, Gustafsson L. 2012. A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. Conservation Letters 5, 421-431. https://doi.org/10.1111/j.1755-263X.2012.00257.x
Lindenmayer DB, Franklin JF. 2002. Conserving forest biodiversity: A comprehensive multiscaled approach. Island Press, Washington.
Lodin I, Eriksson LO, Forsell N, Korosuo A. 2020. Combining climate change mitigation scenarios with current forest owner behavior: A Scenario study from a region in Southern Sweden. Forests, 11, 346. https://doi.org/10.3390/f11030346
Lodin I. 2018. Milestone 18 - 1st Stakeholder Workshop. First Swedish Stakeholder Workshop: Workshop documentation. ALTERFOR project. https://alterfor-project.eu/files/alterfor/download/Deliverables/Wp4%20report_1st%20stakeholder%20workshop%20sweden.pdf
Lundström J, Öhman K, Laudon H. 2018. Comparing buffer zone alternatives in forest planning using a decision support system. Scandinavian Journal of Forest Research 33, 493-501. https://doi.org/10.1080/02827581.2018.1441900
Maxwell SL, Fuller RA, Brooks TM, Watson JE. 2016. Biodiversity: The ravages of guns, nets and bulldozers. Nature 536:143-145. https://doi.org/10.1038/536143a
McDermott CL, Cashore B, Kanowski P. 2010. Global Environmental Forest Policies. An international comparison. Earthscan, London & NY. https://doi.org/10.4324/9781849774925
Michanek G, Bostedt G, Ekvall H, Forsberg M, Hof A, de Jong J, Rudolphi J, Zabel A. 2018. Landscape planning-paving the way for effective conservation of forest biodiversity and a diverse forestry? Forests, 9, 253. https://doi.org/10.3390/f9090523
Naiman RJ, Decamps H. 1997. The ecology of interfaces: riparian zones. Annu. Rev. Ecol. Sys. 28, 621-658. https://doi.org/10.1146/annurev.ecolsys.28.1.621
Naiman RJ, Decamps H, Pollock M. 1993. The role of riparian corridors in maintaining regional biodiversity. Ecological applications 3, 209-212. https://doi.org/10.2307/1941822
Nichiforel L, et al. 2018. How private are Europe's private forests? A comparative property rights analysis. Land Use Policy 76, 535-552. https://doi.org/10.1016/j.landusepol.2018.02.034
Nilsson M, Nordkvist K, Jonzén J, Lindgren N, Axensten P, Wallerman J, Egberth M, Larsson S, Nilsson L, Eriksson J, Olsson H. 2017. A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory. Remote Sensing of Environment. 194: 447-454. https://doi.org/10.1016/j.rse.2016.10.022
Oldén A, Peura M, Saine S, Kotiaho JS, Halme P. 2019a. The effect of buffer strip width and selective logging on riparian forest microclimate. Forest Ecology and Management, 453. https://doi.org/10.1016/j.foreco.2019.117623
Oldén A, Selonen VAO, Lehkonen E, Kotiaho JS. 2019b. The effect of buffer strip width and selective logging on streamside plant communities. BMC Ecology 19, 9. https://doi.org/10.1186/s12898-019-0225-0
Payn T, Carnus JM, Freer-Smith P, Kimberley M, Kollert W, Liu S, Orazio C, Rodriguez L, Silva LN, Wingfield MJ. 2015. Changes in planted forests and future global implications. Forest Ecology and Management 352:57-67. https://doi.org/10.1016/j.foreco.2015.06.021
PEFC. 2024. Svenska PEFC-standarden. Available at: https://pefc.se/vara-standarder/svenska-pefc-standarden (Accessed: 29 August 2024).
Perhans K, Glöde D, Gilbertsson J, Persson A, Gustafsson L. 2011. Fine-scale conservation planning outside of reserves: Cost-effective selection of retention patches at final harvest. Ecological Economics 70, 771-777. https://doi.org/10.1016/j.ecolecon.2010.11.014
Ring E, Widenfalk O, Jansson G, Holmström H, Högbom L, Sonesson J. 2018. Riparian forests along small streams on managed forest land in Sweden. Scandinavian Journal of Forest Research, 33, 133-146. https://doi.org/10.1080/02827581.2017.1338750
Ruete A, Snäll T, Jönsson M. 2016. Dynamic anthropogenic edge effects on the distribution and diversity of fungi in fragmented old-growth forests. Ecological Applications 26: 1475-1485. https://doi.org/10.1890/15-1271
SFA (Swedish Forest Agency). 2024. Miljöhänsyn vid föryngringsavverkning. Available at: https://www.skogsstyrelsen.se/statistik/statistik-efter-amne/miljohansyn-vid-foryngringsavverkning/ (Accessed: 12 August 2024).
SFA (Swedish Forest Agency). 2023. Frivilliga avsättningar och certifierad areal [Voluntary set-asides and certified area]. https://www.skogsstyrelsen.se/statistik/statistik-efter-amne/frivilliga-avsattningar-och-certifiering/ (accessed on 29 November 2023).
SFA (Swedish Forest Agency). 2020a. Skogsvårdslagstiftningen. Gällande Regler 1 April 2020 [The Swedish Forestry Act. Valid Rules 1 April 2020]; Swedish Forest Agency: Jönköping, Sweden, 2020; pp. 93.
SFA (Swedish Forest Agency). 2020b. Anmälan om avverkning [Notification of felling]. https://www.skogsstyrelsen.se/globalassets/sjalvservice/blanketter/avverkning/anmalan-om-avverkning.pdf (In Swedish) (accessed 2020-04-16).
SFA (Swedish Forest Agency). 2018. Skogliga grunddata. Available online: http://skogsdataportalen.skogsstyrelsen.se/Skogsdataportalen/ (accessed 1 March 2018)
Simonsson P, Gustafsson L, Östlund L. 2015. Retention forestry in Sweden: driving forces, debate and implementation 1968-2003. Scandinavian Journal of Forest Research 30, 154-173. https://doi.org/10.1080/02827581.2014.968201
SLU (Swedish University of Agricultural Sciences). 2023. Skogsdata 2023; Department of Forest Resource Management, Swedish University of Agricultural Sciences: Umeå, Sweden. https://www.slu.se/globalassets/ew/org/centrb/rt/dokument/skogsdata/skogsdata_2023_webb.pdf (accessed on 29 November 2023).
SLU (Swedish University of Agricultural Sciences), 2020. SLU Forest Map. https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-national-forest-inventory/forest-statistics/slu-forest-map/sluforestmaponline/ (accessed 2019-02-01)
Statistics Sweden. 2023. Formally protected forest land, voluntary set-asides, consideration patches and unproductive forest land. Sweden's Official Statistics, Statistical news from Statistics Sweden 2023-06-29 8.00.
Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C. 2015. The trajectory of the Anthropocene: The Great Acceleration. The Anthropocene Review 2:81-98. https://doi.org/10.1177/2053019614564785
Strange N, Rahbek C, Jepse JK, Lund MP. 2006. Using farmland prices to evaluate cost-efficiency of national versus regional reserve selection in Denmark. Biological Conservation 128, 455-466. https://doi.org/10.1016/j.biocon.2005.10.009
Van der Plas F, Manning P, Allan E, Scherer-Lorenzen M, Verheyen K, Wirth C, Zavala MA, Hector A, Ampoorter E, Baeten L, and .... 2016. Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests. Nature communications 7:1-11. https://doi.org/10.1038/ncomms11109
Wikberg S, Perhans K, Kindstrand C, Boberg Djupström L, Boman M, Mattsson L, Martin Schroeder L, Weslien J, Gustafsson L. 2009. 'Cost-effectiveness of conservation strategies implemented in boreal forests: The area selection process', Biological Conservation, 142(3), pp. 614-624. https://doi.org/10.1016/j.biocon.2008.11.014
Willmer JNG, Puettker T, Prevedello JA. 2022. Global impacts of edge effects on species richness. Biological Conservation 272: 109654. https://doi.org/10.1016/j.biocon.2022.109654
Wolf CT, Levi W, Ripple J, Zárrate-Charry DA, Betts MG. 2021. A forest loss report card for the world's protected areas. Nature Ecology & Evolution 5: 520-529. https://doi.org/10.1038/s41559-021-01389-0
Zabel A, Bostedt G, Ekvall H. 2018. Policies for forest landscape management - A conceptual approach with an empirical application for Swedish conditions. Forest Policy and Economics, 86, 13-21. https://doi.org/10.1016/j.forpol.2017.10.008