##plugins.themes.bootstrap3.article.main##

Patrik Ulvdal
Göran Ståhl
Lars Sängstuvall
Ljusk Ola Eriksson
Karin Öhman

Keywords:

bias, decision support systems, forest inventory, forest management, forest planning, uncertainty

Abstract

Accurate forest data is essential for informed decisions regarding forest policy and management. Traditionally collected through field surveys, this type of data has increasingly been produced with remote sensing (RS). RS provides comprehensive resource maps produced with data from sensors, including airborne laser scanning (ALS) and satellite imagery. However, RS predictions can include large uncertainties, including both random and systematic errors. The systematic errors often stem from the problem of regression towards the mean, whereby small true values are overestimated while large true values are underestimated. These errors pose challenges for effective forest management planning since they can lead to wrong assumptions about forest conditions, for example, that a forest conforms to average conditions due to reduced variability. In this study, we quantified the differences between expected and realised outcomes in forest planning informed by RS predictions, specifically evaluating inventories based on ALS and optical satellite imagery. The evaluation was made according to a business-as-usual scenario with additional concerns about biodiversity and carbon sink targets. The satellite-based forest inventory, more impacted by both general uncertainty and regression towards the mean, performed worse than ALS. Our results indicate that reliance on RS predictions led to 10% to 12% overestimated harvest levels, with notable fluctuations over time, alongside a decrease in net present value of -6% to -9%. Furthermore, carbon stocks were unintentionally reduced in the satellite-based plans, with overestimations ranging from 8% to 24%. Across both RS methods, achieving stable development for biologically valuable forests proved difficult. Our findings underscore the relevance of these issues for forestry and are important to ongoing policy development related to forest monitoring and planning.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Section
Research articles
References

Andersen H-E, McGaughey RJ, Reutebuch SE. 2005. Estimating forest canopy fuel parameters using LIDAR data. Remote Sens Environ 94(4):441-449. https://doi.org/10.1016/j.rse.2004.10.013 DOI: https://doi.org/10.1016/j.rse.2004.10.013

Appiah Mensah A, Jonzén J, Nyström K, Wallerman J, Nilsson M. 2023. Mapping site index in coniferous forests using bi-temporal airborne laser scanning data and field data from the Swedish national forest inventory. For Ecol Manage 547:121395. https://doi.org/10.1016/j.foreco.2023.121395 DOI: https://doi.org/10.1016/j.foreco.2023.121395

Astrup R, Rahlf J, Bjørkelo K, Debella-Gilo M, Gjertsen A-K, Breidenbach J. 2019. Forest information at multiple scales: development, evaluation and application of the Norwegian forest resources map SR16. Scand J For Res 34(6):484-496. https://doi.org/10.1080/02827581.2019.1588989 DOI: https://doi.org/10.1080/02827581.2019.1588989

Barnett AG, van der Pols JC, Dobson AJ. 2005. Regression to the mean: what it is and how to deal with it. Int J Epidemiol 34(1):215-220. https://doi.org/10.1093/ije/dyh299 DOI: https://doi.org/10.1093/ije/dyh299

Barth A, Lind T, Ståhl G. 2012. Restricted imputation for improving spatial consistency in landscape level data for forest scenario analysis. For Ecol Manage 272:61-68. https://doi.org/10.1016/j.foreco.2011.07.009 DOI: https://doi.org/10.1016/j.foreco.2011.07.009

Bell DE. 1982. Regret in decision making under uncertainty. Oper Res 30(5):961-981. https://doi.org/10.1287/opre.30.5.961 DOI: https://doi.org/10.1287/opre.30.5.961

Bell DE. 1985. Disappointment in decision making under uncertainty. Oper Res 33(1):1-27. https://doi.org/10.1287/opre.33.1.1 DOI: https://doi.org/10.1287/opre.33.1.1

Bontemps J-D, Bouriaud O, Vega C, Bouriaud L. 2022. Offering the appetite for the monitoring of European forests a diversified diet. Ann For Sci 79(1):19. https://doi.org/10.1186/s13595-022-01139-7 DOI: https://doi.org/10.1186/s13595-022-01139-7

Bradshaw CJA, Warkentin IG. 2015. Global estimates of boreal forest carbon stocks and flux. Glob Planet Change 128:24-30. https://doi.org/10.1016/j.gloplacha.2015.02.004 DOI: https://doi.org/10.1016/j.gloplacha.2015.02.004

Breidenbach J, Ellison D, Petersson H, Korhonen KT, Henttonen HM, Wallerman J, Fridman J, Gobakken T, Astrup R, Næsset E. 2022. Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions. Ann For Sci 79(1):2. https://doi.org/10.1186/s13595-022-01120-4 DOI: https://doi.org/10.1186/s13595-022-01120-4

Brockerhoff EG, Barbaro L, Castagneyrol B, Forrester DI, Gardiner B, González-Olabarria JR, Lyver PO, Meurisse N, Oxbrough A, Taki H, Thompson ID, van der Plas F, Jactel H. 2017. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers Conserv 26(13):3005-3035. https://doi.org/10.1007/s10531-017-1453-2 DOI: https://doi.org/10.1007/s10531-017-1453-2

Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM. 2006. Measurement error in nonlinear models: a modern perspective. 2nd ed. Chapman and Hall/CRC. https://doi.org/10.1201/9781420010138 DOI: https://doi.org/10.1201/9781420010138

Ceccherini G, Duveiller G, Grassi G, Lemoine G, Avitabile V, Pilli R, Cescatti A. 2020. Abrupt increase in harvested forest area over Europe after 2015. Nature 583(7814):72-77.

https://doi.org/10.1038/s41586-020-2438-y DOI: https://doi.org/10.1038/s41586-020-2438-y

Chudy RP, Cubbage FW. 2020. Research trends: Forest investments as a financial asset class. Forest Policy and Economics 119:102273. https://doi.org/10.1016/j.forpol.2020.102273 DOI: https://doi.org/10.1016/j.forpol.2020.102273

Duvemo K, Lämås T, Eriksson LO, Wikström P. 2014. Introducing cost-plus-loss analysis into a hierarchical forestry planning environment. Annals of Operations Research 219(1):415-431.

https://doi.org/10.1007/s10479-012-1139-9 DOI: https://doi.org/10.1007/s10479-012-1139-9

Eggers J, Holmgren S, Nordström E-M, Lämås T, Lind T, Öhman K. 2019. Balancing different forest values: Evaluation of forest management scenarios in a multi-criteria decision analysis framework. Forest Policy and Economics 103:55-69. https://doi.org/10.1016/j.forpol.2017.07.002 DOI: https://doi.org/10.1016/j.forpol.2017.07.002

Eggers J, Lundström J, Snäll T, Öhman K. 2022. Balancing wood production and biodiversity in intensively managed boreal forest. Scandinavian Journal of Forest Research 37(3):213-225. https://doi.org/10.1080/02827581.2022.2066170 DOI: https://doi.org/10.1080/02827581.2022.2066170

Eriksson LO, Borges JG. 2014. Computerized decision support tools to address forest management planning problems: history and approach for assessing the state of art world-wide. In: Borges JG, Nordström EM, Garcia-Gonzalo J, Hujala T, Trasobares A, editors. Computer-Based Tools for Supporting Forest Management: The Experience and the Expertise World-wide. p. 3-25. https://pub.epsilon.slu.se/11417/7/borges_jg_etal_140825.pdf

European Commission. 2024. Part 3 - Accompanying the document: Communication from the commission to the European Parliament, the council, the European Economic and Social Committee and the Committee of the Regions - Securing our future - Europe's 2040 climate target and path to climate neutrality by 2050, building a sustainable, just and prosperous society. (Commission staff working document - impact assessment report).

Fahlvik N, Elfving B, Wikström P. 2014. Evaluation of growth functions used in the Swedish Forest Planning System Heureka. Silva Fennica 48(2). https://doi.org/10.14214/sf.1013 DOI: https://doi.org/10.14214/sf.1013

Fassnacht FE, White JC, Wulder MA, Næsset E. 2023. Remote sensing in forestry: current challenges, considerations and directions. Forestry: An International Journal of Forest Research cpad024. https://doi.org/10.1093/forestry/cpad024 DOI: https://doi.org/10.1093/forestry/cpad024

Flisberg P, Frisk M, Rönnqvist M. 2014. Integrated harvest and logistic planning including road upgrading. Scandinavian Journal of Forest Research 29(sup1):195-209. https://doi.org/10.1080/02827581.2014.929733 DOI: https://doi.org/10.1080/02827581.2014.929733

Flisberg P, Rönnqvist M, Willén E, Forsmark V, Davidsson A. 2022. Optimized locations of landings in forest operations. Canadian Journal of Forest Research 52(1):59-69. https://doi.org/10.1139/cjfr-2021-0032 DOI: https://doi.org/10.1139/cjfr-2021-0032

Gilichinsky M, Heiskanen J, Barth A, Wallerman J, Egberth M, Nilsson M. 2012. Histogram matching for the calibration of kNN stem volume estimates. International Journal of Remote Sensing 33(22):7117-7131. https://doi.org/10.1080/01431161.2012.700134 DOI: https://doi.org/10.1080/01431161.2012.700134

Gustavsson L, Haus S, Lundblad M, Lundström A, Ortiz CA, Sathre R, Truong NL, Wikberg P-E. 2017. Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels. Renewable and Sustainable Energy Reviews 67:612-624. https://doi.org/10.1016/j.rser.2016.09.056 DOI: https://doi.org/10.1016/j.rser.2016.09.056

Hansen MC, Loveland TR. 2012. A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment 122:66-74. https://doi.org/10.1016/j.rse.2011.08.024 DOI: https://doi.org/10.1016/j.rse.2011.08.024

Holopainen M, Mäkinen A, Rasinmäki J, Hyytiäinen K, Bayazidi S, Pietilä I. 2010. Comparison of various sources of uncertainty in stand-level net present value estimates. Forest Policy and Economics 12(5):377-386. https://doi.org/10.1016/j.forpol.2010.02.009 DOI: https://doi.org/10.1016/j.forpol.2010.02.009

Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75(1):3-35.

https://doi.org/10.1890/04-0922 DOI: https://doi.org/10.1890/04-0922

Hunault-Fontbonne J, Eyvindson K. 2023. Bridging the gap between forest planning and ecology in biodiversity forecasts: a review. Ecological Indicators 154:110620. https://doi.org/10.1016/j.ecolind.2023.110620 DOI: https://doi.org/10.1016/j.ecolind.2023.110620

Hynynen J, Salminen H, Ahtikoski A, Huuskonen S, Ojansuu R, Siipilehto J, Lehtonen M, Eerikäinen K. 2015. Long-term impacts of forest management on biomass supply and forest resource development: a scenario analysis for Finland. European Journal of Forest Research 134(3):415-431. https://doi.org/10.1007/s10342-014-0860-0 DOI: https://doi.org/10.1007/s10342-014-0860-0

Islam MdN, Kurttila M, Mehtätalo L, Pukkala T. 2010. Inoptimality losses in forest management decisions caused by errors in an inventory based on airborne laser scanning and aerial photographs. Canadian Journal of Forest Research 40(12):2427-2438. https://doi.org/10.1139/X10-185 DOI: https://doi.org/10.1139/X10-185

Islam MdN, Pukkala T, Kurttila M, Mehtätalo L, Heinonen T. 2012. Effects of forest inventory errors on the area and spatial layout of harvest blocks. European Journal of Forest Research 131(6):1943-1955. https://doi.org/10.1007/s10342-012-0645-2 DOI: https://doi.org/10.1007/s10342-012-0645-2

Johnson KN, Scheurman HL. 1977. Techniques for prescribing optimal timber harvest and investment under different objectives-discussion and synthesis [monograph]. Forest Science 23(Suppl. 1.1):S1-S31.

Jonsson B, Jacobsson J, Kallur H. 1993. The forest management planning package. Theory and application. Studia Forestalia Suecica (189).

Kangas A, Kurttila M, Hujala T, Eyvindson K, Kangas J. 2015. Decision support for forest management. 2nd ed. Springer International Publishing. https://doi.org/10.1007/978-3-319-23522-6 DOI: https://doi.org/10.1007/978-3-319-23522-6

Kangas A, Myllymäki M, Mehtätalo L. 2023. Understanding uncertainty in forest resources maps. Silva Fennica 57(2). https://doi.org/10.14214/sf.22026 DOI: https://doi.org/10.14214/sf.22026

Kirschbaum MUF. 2003. To sink or burn? A discussion of the potential contributions of forests to greenhouse gas balances through storing carbon or providing biofuels. Biomass and Bioenergy 24(4):297-310. https://doi.org/10.1016/S0961-9534(02)00171-X DOI: https://doi.org/10.1016/S0961-9534(02)00171-X

Kotivuori E, Korhonen L, Packalen P. 2016. Nationwide airborne laser scanning based models for volume, biomass and dominant height in Finland. Silva Fennica 50(4). https://doi.org/10.14214/sf.1567 DOI: https://doi.org/10.14214/sf.1567

Lämås T, Sängstuvall L, Öhman K, Lundström J, Årevall J, Holmström H, Nilsson L, Nordström EM, Wikberg PE, Wikström P, Eggers J. 2023. The multi-faceted Swedish Heureka forest decision support system: context, functionality, design, and ten years experiences of its use. Frontiers in Forests and Global Change 6. https://doi.org/10.3389/ffgc.2023.1163105 DOI: https://doi.org/10.3389/ffgc.2023.1163105

Land AH, Doig AG. 1960. An automatic method of solving discrete programming problems. Econometrica 28(3):497-520. https://doi.org/10.2307/1910129 DOI: https://doi.org/10.2307/1910129

Lindgren N, Nyström K, Saarela S, Olsson H, Ståhl G. 2022. Importance of calibration for improving the efficiency of data assimilation for predicting forest characteristics. Remote Sensing 14(18):4627. https://doi.org/10.3390/rs14184627 DOI: https://doi.org/10.3390/rs14184627

Lindgren O. 1984. A study on circular plot sampling of Swedish forest compartments. PhD thesis. Swedish University of Agricultural Sciences.

Lindgren O. 2000. Quality control of measurements made on fixed-area sample plots. In: Hansen M, Burk T, editors. 2000. https://www.fs.usda.gov/treesearch/pubs/15877

Linser S, Lier M, Bastrup-Birk A. 2023. Key information for forest policy decision-making-Does current reporting on forests and forestry reflect forest discourses? iForest - Biogeosciences and Forestry 16(6):325. https://doi.org/10.3832/ifor4457-016 DOI: https://doi.org/10.3832/ifor4457-016

Lundmark T, Poudel BC, Stål G, Nordin A, Sonesson J. 2018. Carbon balance in production forestry in relation to rotation length. Canadian Journal of Forest Research 48(6):672-678. https://doi.org/10.1139/cjfr-2017-0410 DOI: https://doi.org/10.1139/cjfr-2017-0410

Nilsson M, Nordkvist K, Jonzén J, Lindgren N, Axensten P, Wallerman J, Egberth M, Larsson S, Nilsson L, Eriksson J, Olsson H. 2017. A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory. Remote Sensing of Environment 194:447-454. https://doi.org/10.1016/j.rse.2016.10.022 DOI: https://doi.org/10.1016/j.rse.2016.10.022

Nilsson M, Wasterlund DS, Wahlberg O, Eriksson LO. 2012. Forest planning in a Swedish company-a knowledge management analysis of forest information. Silva Fennica 46(5):717-731. https://doi.org/10.14214/sf.922 DOI: https://doi.org/10.14214/sf.922

Orsi F, Ciolli M, Primmer E, Varumo L, Geneletti D. 2020. Mapping hotspots and bundles of forest ecosystem services across the European Union. Land Use Policy 99:104840. https://doi.org/10.1016/j.landusepol.2020.104840 DOI: https://doi.org/10.1016/j.landusepol.2020.104840

Ortiz CA, Liski J, Gärdenäs AI, Lehtonen A, Lundblad M, Stendahl J, Ågren GI, Karltun E. 2013. Soil organic carbon stock changes in Swedish forest soils-A comparison of uncertainties and their sources through a national inventory and two simulation models. Ecological Modelling 251:221-231. https://doi.org/10.1016/j.ecolmodel.2012.12.017 DOI: https://doi.org/10.1016/j.ecolmodel.2012.12.017

Palahí M, Valbuena R, Senf C, Acil N, Pugh TAM, Sadler J, Seidl R, Potapov P, Gardiner B, Hetemäki L, Chirici G, Francini S, Hlásny T, Lerink BJW, Olsson H, González Olabarria JR, Ascoli D, Asikainen A, Bauhus J, Berndes G, Donis J, Fridman J, Hanewinkel M, Jactel H, Lindner M, Marchetti M, Marušák R, Sheil D, Tomé M, Trasobares A, Verkerk PJ, Korhonen M, Nabuurs G-J. 2021. Concerns about reported harvests in European forests. Nature 592(7856):E15-E17. https://doi.org/10.1038/s41586-021-03292-x DOI: https://doi.org/10.1038/s41586-021-03292-x

Pasalodos-Tato M, Mäkinen A, Garcia-Gonzalo J, Borges JG, Lämås T, Eriksson LO. 2013. Assessing uncertainty and risk in forest planning and decision support systems: review of classical methods and introduction of new approaches. Forest Systems 22(2):282-303. https://doi.org/10.5424/fs/2013222-03063 DOI: https://doi.org/10.5424/fs/2013222-03063

de Pellegrin Llorente I, Eyvindson K, Mazziotta A, Lämås T, Eggers J, Öhman K. 2023. Perceptions of uncertainty in forest planning: contrasting forest professionals' perspectives with the latest research. Canadian Journal of Forest Research 53(6):391-406. https://doi.org/10.1139/cjfr-2022-0193 DOI: https://doi.org/10.1139/cjfr-2022-0193

Picard N, Leban J-M, Guehl J-M, Dreyer E, Bouriaud O, Bontemps J-D, Landmann G, Colin A, Peyron J-L, Marty P. 2021. Recent increase in European forest harvests as based on area estimates (Ceccherini et al. 2020a) not confirmed in the French case. Annals of Forest Science 78(1):1-5.

https://doi.org/10.1007/s13595-021-01030-x DOI: https://doi.org/10.1007/s13595-021-01030-x

Probeck M, Ramminger G, Herrmann D, Gomez S, Häusler T. 2014. European forest monitoring approaches. In: Manakos I, Braun M, editors. Land Use and Land Cover Mapping in Europe: Practices & Trends. Springer Netherlands. p. 89-114. https://doi.org/10.1007/978-94-007-7969-3_7 DOI: https://doi.org/10.1007/978-94-007-7969-3_7

Reese H, Nilsson M, Pahlén TG, Hagner O, Joyce S, Tingelöf U, Egberth M, Olsson H. 2003. Countrywide estimates of forest variables using satellite data and field data from the National Forest Inventory. AMBIO: A Journal of the Human Environment 32(8):542-548. https://doi.org/10.1579/0044-7447-32.8.542 DOI: https://doi.org/10.1579/0044-7447-32.8.542

Ruotsalainen R, Pukkala T, Kangas A, Packalen P. 2021. Effects of errors in basal area and mean diameter on the optimality of forest management prescriptions. Annals of Forest Science 78(1):18. https://doi.org/10.1007/s13595-021-01037-4 DOI: https://doi.org/10.1007/s13595-021-01037-4

Schuck A, Päivinen R, Häme T, Van Brusselen J, Kennedy P, Folving S. 2003. Compilation of a European forest map from Portugal to the Ural mountains based on earth observation data and forest statistics. Forest Policy and Economics 5(2):187-202. https://doi.org/10.1016/S1389-9341(03)00024-8 DOI: https://doi.org/10.1016/S1389-9341(03)00024-8

Schumacher J, Hauglin M, Astrup R, Breidenbach J. 2020. Mapping forest age using National Forest Inventory, airborne laser scanning, and Sentinel-2 data. Forest Ecosystems 7(1):60.

https://doi.org/10.1186/s40663-020-00274-9 DOI: https://doi.org/10.1186/s40663-020-00274-9

Seebach L, McCallum I, Fritz S, Kindermann G, Leduc S, Böttcher H, Fuss S. 2012. Choice of forest map has implications for policy analysis: a case study on the EU biofuel target. Environmental Science & Policy 22:13-24. https://doi.org/10.1016/j.envsci.2012.04.010 DOI: https://doi.org/10.1016/j.envsci.2012.04.010

Skytt T, Englund G, Jonsson B-G. 2021. Climate mitigation forestry-temporal trade-offs. Environmental Research Letters 16(11):114037. https://doi.org/10.1088/1748-9326/ac30fa DOI: https://doi.org/10.1088/1748-9326/ac30fa

Ståhl G. 1992. A study on the quality of compartmentwise forest data acquired by subjective inventory methods. Report No. 24. Department of Biometry and Forest Management, Swedish University of Agricultural Sciences.

Ståhl G, Gobakken T, Saarela S, Persson HJ, Ekström M, Healey SP, Yang Z, Holmgren J, Lindberg E, Nyström K, Papucci E, Ulvdal P, Ørka HO, Næsset E, Hou Z, Olsson H, McRoberts RE. 2024. Why ecosystem characteristics predicted from remotely sensed data are unbiased and biased at the same time - and how this affects applications. Forest Ecosystems 11:100164. https://doi.org/10.1016/j.fecs.2023.100164 DOI: https://doi.org/10.1016/j.fecs.2023.100164

Stigler SM. 1997. Regression towards the mean, historically considered. Statistical Methods in Medical Research 6(2):103-114. https://doi.org/10.1177/096228029700600202 DOI: https://doi.org/10.1177/096228029700600202

Tellinghuisen J. 2000. Inverse vs. classical calibration for small data sets. Fresenius' Journal of Analytical Chemistry 368(6):585-588. https://doi.org/10.1007/s002160000556 DOI: https://doi.org/10.1007/s002160000556

The Swedish Environmental Protection Agency. 2024. Levande skogar - Sveriges miljömål. The environmental objectives system. https://sverigesmiljomal.se/miljomalen/levande-skogar/ [Accessed 2024-03-07]

Ulvdal P, Öhman K, Eriksson LO, Wästerlund DS, Lämås T. 2023. Handling uncertainties in forest information: the hierarchical forest planning process and its use of information at large forest companies. Forestry: An International Journal of Forest Research 96(1):62-75. https://doi.org/10.1093/forestry/cpac028 DOI: https://doi.org/10.1093/forestry/cpac028

Wilhelmsson P, Lämås T, Wallerman J, Eggers J, Öhman K. 2022. Improving dynamic treatment unit forest planning with cellular automata heuristics. European Journal of Forest Research 141(5):887-900. https://doi.org/10.1007/s10342-022-01479-z DOI: https://doi.org/10.1007/s10342-022-01479-z

Zald HSJ, Wulder MA, White JC, Hilker T, Hermosilla T, Hobart GW, Coops NC. 2016. Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sensing of Environment 176:188-201. https://doi.org/10.1016/j.rse.2016.01.015 DOI: https://doi.org/10.1016/j.rse.2016.01.015

How to Cite

Long-term strategic forest planning based on biased remote sensing predictions. (2025). Forests Monitor, 2(1), 138-175. https://doi.org/10.62320/fm.v2i1.25

Similar Articles

You may also start an advanced similarity search for this article.