##plugins.themes.bootstrap3.article.main##

Marco Mina
Sebastian Marzini
Alice Crespi
Katharina Albrich

Keywords:

calibration, disturbance modelling, European Alps , forest landscape models, forest modelling, model initialization

Abstract

Simulation models are important tools to study the impacts of climate change and natural disturbances on forest ecosystems. Being able to track tree demographic processes in a spatially explicit manner, process-based forest landscape models are considered the most suitable to provide robust projections that can aid decision-making in forest management. However, landscape models are challenging to parameterize and setting up new study areas for application studies largely depends on data availability. The aim of this study is to demonstrate the parameterization process, including model testing and evaluation, for setting up a study area in the Italian Alps in a process-based forest landscape model using available data. We processed soil, climate, carbon pools, vegetation, disturbances and forest management data, and ran iterative spin-up simulations to generate a virtual landscape best resembling current conditions. Our results demonstrated the feasibility of initializing forest landscape models with data that are typically available from forest management plans and national forest inventories, as well as openly available mapping products. Evaluation tests proved the ability of the model to capture the environmental constraints driving regeneration dynamics and inter-specific competition in forests of the Italian Alps, as well as to simulate natural disturbances and carbon dynamics. The model can subsequently be applied to investigate forest landscape development under a suite of future scenarios and provide recommendations for adapting forest management decisions.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

Section
Research articles
References

Albrich K, Rammer W, Seidl R. 2020a. Climate change causes critical transitions and irreversible alterations of mountain forests. Global Change Biology 26:4013-4027. https://doi.org/10.1111/gcb.15118 DOI: https://doi.org/10.1111/gcb.15118

Albrich K, Rammer W, Thom D, Seidl R. 2018. Trade-offs between temporal stability and level of forest ecosystem services provisioning under climate change. Ecological Applications 28:1884-1896. https://doi.org/10.1002/eap.1785 DOI: https://doi.org/10.1002/eap.1785

Albrich K, Rammer W, Turner MG, Ratajczak Z, Braziunas KH, Hansen WD, Seidl R. 2020b. Simulating forest resilience: A review. Global Ecology and Biogeography 29:2082-2096. https://doi.org/10.1111/geb.13197 DOI: https://doi.org/10.1111/geb.13197

Albrich K, Seidl R, Rammer W, Thom D, Fassnacht F. 2023. From sink to source: changing climate and disturbance regimes could tip the 21st century carbon balance of an unmanaged mountain forest landscape. Forestry 96:399-409. https://doi.org/10.1093/forestry/cpac022 DOI: https://doi.org/10.1093/forestry/cpac022

Augusto L, Boca A. 2022. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon. Nature Communications 13:1097. https://doi.org/10.1038/s41467-022-28748-0 DOI: https://doi.org/10.1038/s41467-022-28748-0

Autonomous Province of Bolzano/Bozen. 2010. Waldtypisierung Südtirol - Tipologie Forestali dell'Alto Adige - Forest Types of South Tyrol. Bolzano/Bozen https://www.provincia.bz.it/agricoltura-foreste/bosco-legno-malghe/studi-progetti/tipologie-forestali-in-alto-adige.asp accessed on 13.05.2024.

Bartkowiak P, Castelli M, Crespi A, Niedrist G, Zanotelli D, Colombo R, Notarnicola C. 2022. Land surface temperature reconstruction under long-term cloudy-sky conditions at 250 m spatial resolution: case study of Vinschgau/Venosta Valley in the European Alps. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15:2037-2057. https://doi.org/10.1109/JSTARS.2022.3147356 DOI: https://doi.org/10.1109/JSTARS.2022.3147356

Blattert C, Mutterer S, Thrippleton T, Diaci J, Fidej G, Bont LG, Schweier J. 2024. Managing European Alpine forests with close-to-nature forestry to improve climate change mitigation and multifunctionality. Ecological Indicators 165:112154. https://doi.org/10.1016/j.ecolind.2024.112154 DOI: https://doi.org/10.1016/j.ecolind.2024.112154

Bonan GB. 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320:1444-1449. https://doi.org/10.1126/science.1155121 DOI: https://doi.org/10.1126/science.1155121

Bosela M, Merganičová K, Torresan C, Cherubini P, Fabrika M, Heinze B, Höhn M, Kašanin-Grubin M, Klopčič M, Mészáros I. 2022. Modelling future growth of mountain forests under changing environments. Climate-Smart Forestry in Mountain Regions 223. https://doi.org/10.1007/978-3-030-80767-2_7 DOI: https://doi.org/10.1007/978-3-030-80767-2_7

Bugmann H, Seidl R. 2022. The evolution, complexity and diversity of models of long-term forest dynamics. Journal of Ecology 110:2288-2307. https://doi.org/10.1111/1365-2745.13989 DOI: https://doi.org/10.1111/1365-2745.13989

Bychkov I, Popova A. 2023. Forest landscape model initialization with remotely sensed-based open-source databases in the absence of inventory data. Forests 14:1995. https://doi.org/10.3390/f14101995 DOI: https://doi.org/10.3390/f14101995

Canedoli C, Ferrè C, Abu El Khair D, Comolli R, Liga C, Mazzucchelli F, Proietto A, Rota N, Colombo G, Bassano B, Viterbi R, Padoa-Schioppa E. 2020. Evaluation of ecosystem services in a protected mountain area: Soil organic carbon stock and biodiversity in alpine forests and grasslands. Ecosystem Services 44:101135. https://doi.org/10.1016/j.ecoser.2020.101135 DOI: https://doi.org/10.1016/j.ecoser.2020.101135

Chen J, John R, Sun G, McNulty S, Noormets A, Xiao J, Turner MG, Franklin JF. 2014. Carbon fluxes and storage in forests and landscapes. Pages 139-166 in J. C. Azevedo, A. H. Perera, and M. A. Pinto, editors. Forest landscapes and global change: Challenges for research and management. Springer New York, New York, NY. https://doi.org/10.1007/978-1-4939-0953-7_6 DOI: https://doi.org/10.1007/978-1-4939-0953-7_6

Cornes RC, van der Schrier G, van den Besselaar EJM, Jones PD. 2018. An ensemble version of the E-OBS temperature and precipitation data sets. Journal of Geophysical Research: Atmospheres 123:9391-9409. https://doi.org/10.1029/2017JD028200 DOI: https://doi.org/10.1029/2017JD028200

Crespi A, Matiu M, Bertoldi G, Petitta M, Zebisch M. 2021. A high-resolution gridded dataset of daily temperature and precipitation records (1980-2018) for Trentino-South Tyrol (north-eastern Italian Alps). Earth Syst. Sci. Data 13:2801-2818. https://doi.org/10.5194/essd-13-2801-2021 DOI: https://doi.org/10.5194/essd-13-2801-2021

De Vos B, Cools N, Ilvesniemi H, Vesterdal L, Vanguelova E, Carnicelli S. 2015. Benchmark values for forest soil carbon stocks in Europe: Results from a large scale forest soil survey. Geoderma 251-252:33-46. https://doi.org/10.1016/j.geoderma.2015.03.008 DOI: https://doi.org/10.1016/j.geoderma.2015.03.008

Di Pierro EA, Mosca E, González-Martínez SC, Binelli G, Neale DB, La Porta N. 2017. Adaptive variation in natural Alpine populations of Norway spruce (Picea abies [L.] Karst) at regional scale: Landscape features and altitudinal gradient effects. Forest Ecology and Management 405:350-359. https://doi.org/10.1016/j.foreco.2017.09.045 DOI: https://doi.org/10.1016/j.foreco.2017.09.045

Dobor L, Baldo M, Bílek L, Barka I, Máliš F, Štěpánek P, Hlásny T. 2024. The interacting effect of climate change and herbivory can trigger large-scale transformations of European temperate forests. Global Change Biology 30:e17194. https://doi.org/10.1111/gcb.17194 DOI: https://doi.org/10.1111/gcb.17194

Dollinger C, Rammer W, Suzuki KF, Braziunas KH, Keller TT, Kobayashi Y, Mohr J, Mori AS, Turner MG, Seidl R. 2024. Beyond resilience: Responses to changing climate and disturbance regimes in temperate forest landscapes across the Northern Hemisphere. Global Change Biology 30:e17468. https://doi.org/10.1111/gcb.17468 DOI: https://doi.org/10.1111/gcb.17468

Duveneck MJ, Thompson JR, Wilson BT. 2015. An imputed forest composition map for New England screened by species range boundaries. Forest Ecology and Management 347:107-115. https://doi.org/10.1016/j.foreco.2015.03.016 DOI: https://doi.org/10.1016/j.foreco.2015.03.016

Dymond CC, Beukema S, Nitschke CR, Coates KD, Scheller RM. 2016. Carbon sequestration in managed temperate coniferous forests under climate change. Biogeosciences Discussions 12:20283-20321. https://doi.org/10.5194/bgd-12-20283-2015 DOI: https://doi.org/10.5194/bgd-12-20283-2015

Dymond CC, Scheller RM, Beukema S. 2012. A new model for simulating climate change and carbon dynamics in forested landscapes. Ecosystems Management 13:1-2. https://doi.org/10.22230/jem.2012v13n2a209 DOI: https://doi.org/10.22230/jem.2012v13n2a209

EEA. 2018. Copernicus High Resolution Layer Forest Type. Copernicus Land Monitoring Service, European Environment Agency (EEA). https://doi.org/10.2909/59b0620c-7bb4-4c82-b3ce-f16715573137.

Ehrenfeld JG, Ravit B, Elgersma K. 2005. Feedback in the plant-soil system. Annual Review of Environment and Resources 30:75-115. https://doi.org/10.1146/annurev.energy.30.050504.144212 DOI: https://doi.org/10.1146/annurev.energy.30.050504.144212

Eurac Research. 2024. Ips typographus annual progression maps. Autonomous Province of Bolzano/Bozen. GeoBrowser MapView South Tyrol. Available at: https://mapview.civis.bz.it/.

Fahey TJ, Woodbury PB, Battles JJ, Goodale CL, Hamburg SP, Ollinger SV, Woodall CW. 2010. Forest carbon storage: ecology, management, and policy. Frontiers in Ecology and the Environment 8:245-252. https://doi.org/10.1890/080169 DOI: https://doi.org/10.1890/080169

Fontes L, Bontemps JD, Bugmann H, Van Oijen M, Gracia C, Kramer K, Lindner M, Rotzer T, Skovsgaard JP. 2010. Models for supporting forest management in a changing environment. Forest Systems 19:8-29. https://doi.org/10.5424/fs/201019S-9315 DOI: https://doi.org/10.5424/fs/201019S-9315

Forzieri G, Girardello M, Ceccherini G, Spinoni J, Feyen L, Hartmann H, Beck PSA, Camps-Valls G, Chirici G, Mauri A, Cescatti A. 2021. Emergent vulnerability to climate-driven disturbances in European forests. Nat Commun 12:1081. https://doi.org/10.1038/s41467-021-21399-7 DOI: https://doi.org/10.1038/s41467-021-21399-7

Furniss TJ, Hessburg PF, Povak NA, Salter RB, Wigmosta MS. 2022. Predicting future patterns, processes, and their interactions: Benchmark calibration and validation procedures for forest landscape models. Ecological Modelling 473:110099. https://doi.org/10.1016/j.ecolmodel.2022.110099 DOI: https://doi.org/10.1016/j.ecolmodel.2022.110099

Gallagher CA, Chudzinska M, Larsen-Gray A, Pollock CJ, Sells SN, White PJC, Berger U. 2021. From theory to practice in pattern-oriented modelling: identifying and using empirical patterns in predictive models. Biological Reviews 96:1868-1888. https://doi.org/10.1111/brv.12729 DOI: https://doi.org/10.1111/brv.12729

Garbarino M, Weisberg PJ. 2020. Land-use legacies and forest change. Landscape Ecology 35:2641-2644. https://doi.org/10.1007/s10980-020-01143-0 DOI: https://doi.org/10.1007/s10980-020-01143-0

Gasparini P, Di Cosmo L, Floris A, De Laurentis D. 2022. Italian National Forest Inventory-methods and results of the third survey: Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio-Metodi e Risultati della Terza Indagine. Springer Nature. https://doi.org/10.1007/978-3-030-98678-0 DOI: https://doi.org/10.1007/978-3-030-98678-0

Gret-Regamey A, Brunner SH, Kienast F. 2012. Mountain ecosystem services: who cares? Mountain Research and Development 32:S23-S34. https://doi.org/10.1659/MRD-JOURNAL-D-10-00115.S1 DOI: https://doi.org/10.1659/MRD-JOURNAL-D-10-00115.S1

Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis DL. 2005. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987-991. https://doi.org/10.1126/science.1116681 DOI: https://doi.org/10.1126/science.1116681

Grünig M, Seidl R, Senf C. 2023. Increasing aridity causes larger and more severe forest fires across Europe. Global Change Biology 29:1648-1659. https://doi.org/10.1111/gcb.16547 DOI: https://doi.org/10.1111/gcb.16547

Gustafson EJ. 2013. When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world. Landscape Ecology 28:1429-1437. https://doi.org/10.1007/s10980-013-9927-4 DOI: https://doi.org/10.1007/s10980-013-9927-4

Haiden T, Kann A, Wittmann C, Pistotnik G, Bica B, Gruber C. 2011. The integrated nowcasting through comprehensive analysis (INCA) system and its validation over the Eastern Alpine Region. Weather and Forecasting 26:166-183. https://doi.org/10.1175/2010WAF2222451.1 DOI: https://doi.org/10.1175/2010WAF2222451.1

Hillebrand L, Marzini S, Crespi A, Hiltner U, Mina M. 2023. Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change 6. https://doi.org/10.3389/ffgc.2023.1240235 DOI: https://doi.org/10.3389/ffgc.2023.1240235

Hof AR, Mina M, Mairota P, Klopčič M, Koivula M, Brůna J, Leitinger G, Vacchiano G. 2024. A perspective on the need for integrated frameworks linking species distribution and dynamic forest landscape models across spatial scales. Frontiers in Ecology and Evolution 12. https://doi.org/10.3389/fevo.2024.1112712 DOI: https://doi.org/10.3389/fevo.2024.1112712

Holland TG, Evans SG, Long JW, Maxwell C, Scheller RM, Potts MD. 2022. The management costs of alternative forest management strategies in the Lake Tahoe Basin. Ecology and Society 27. https://doi.org/10.5751/ES-13481-270443 DOI: https://doi.org/10.5751/ES-13481-270443

Holm S, Schweier J. 2024. Virtual forests for decision support and stakeholder communication. Environmental Modelling & Software 180:106159. https://doi.org/10.1016/j.envsoft.2024.106159 DOI: https://doi.org/10.1016/j.envsoft.2024.106159

Holzer D, Bödeker K, Rammer W, Knoke T. 2024. Evaluating dynamic tree-species-shifting and height development caused by ungulate browsing in forest regeneration using a process-based modeling approach. Ecological Modelling 493:110741. https://doi.org/10.1016/j.ecolmodel.2024.110741 DOI: https://doi.org/10.1016/j.ecolmodel.2024.110741

Honkaniemi J, Rammer W, Seidl R. 2020. Norway spruce at the trailing edge: the effect of landscape configuration and composition on climate resilience. Landscape Ecology 35:591-606. https://doi.org/10.1007/s10980-019-00964-y DOI: https://doi.org/10.1007/s10980-019-00964-y

Huang J, Lucash MS, Scheller RM, Klippel A. 2021. Walking through the forests of the future: using data-driven virtual reality to visualize forests under climate change. International Journal of Geographical Information Science 35:1155-1178. https://doi.org/10.1080/13658816.2020.1830997 DOI: https://doi.org/10.1080/13658816.2020.1830997

Hyyppä M, Turppa T, Hyyti H, Yu X, Handolin H, Kukko A, Hyyppä J, Virtanen JP. 2024. Concepts towards nation-wide individual tree data and virtual forests. ISPRS International Journal of Geo-Information 13:424. https://doi.org/10.3390/ijgi13120424 DOI: https://doi.org/10.3390/ijgi13120424

ITMN. 2025. International Tree Mortality Network - Towards a global understanding of tree mortality. New Phytologist n/a.

Kaarakka L, Cornett M, Domke G, Ontl T, Dee LE. 2021. Improved forest management as a natural climate solution: A review. Ecological Solutions and Evidence 2:e12090. https://doi.org/10.1002/2688-8319.12090 DOI: https://doi.org/10.1002/2688-8319.12090

Kätterer T, Andrén O. 2001. The ICBM family of analytically solved models of soil carbon, nitrogen and microbial biomass dynamics - descriptions and application examples. Ecological Modelling 136:191-207. https://doi.org/10.1016/S0304-3800(00)00420-8 DOI: https://doi.org/10.1016/S0304-3800(00)00420-8

Kaufman L, Rousseeuw PJ. 1986. Clustering large datasets. Pages 425-437 in E. S. Gelsema and L. N. Kanal, editors. Pattern Recognition in Practice. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-444-87877-9.50039-X DOI: https://doi.org/10.1016/B978-0-444-87877-9.50039-X

Keane RE, McKenzie D, Falk DA, Smithwick EAH, Miller C, Kellogg L-KB. 2015. Representing climate, disturbance, and vegetation interactions in landscape models. Ecological Modelling 309-310:33-47. https://doi.org/10.1016/j.ecolmodel.2015.04.009 DOI: https://doi.org/10.1016/j.ecolmodel.2015.04.009

Kirchen G, Calvaruso C, Granier A, Redon P-O, Van der Heijden G, Bréda N, Turpault M-P. 2017. Local soil type variability controls the water budget and stand productivity in a beech forest. Forest Ecology and Management 390:89-103. https://doi.org/10.1016/j.foreco.2016.12.024 DOI: https://doi.org/10.1016/j.foreco.2016.12.024

Kusch E, Davy R. 2022. KrigR-a tool for downloading and statistically downscaling climate reanalysis data. Environmental Research Letters 17:024005. https://doi.org/10.1088/1748-9326/ac48b3 DOI: https://doi.org/10.1088/1748-9326/ac48b3

Landsberg JJ, Waring RH. 1997. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management 95:209-228. https://doi.org/10.1016/S0378-1127(97)00026-1 DOI: https://doi.org/10.1016/S0378-1127(97)00026-1

Leidinger D, Formayer H, Nadeem I, Frisch-Niggemayer A. 2018. Localization of climate-data for Stubai Valley: HiReSt. Institute of Meteorology (BOKU-Met), University of Natural Resources and Life Sciences, Vienna.

Lucash MS, Marshall AM, Weiss SA, McNabb JW, Nicolsky DJ, Flerchinger GN, Link TE, Vogel JG, Scheller RM, Abramoff RZ, Romanovsky VE. 2023. Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska. Ecological Modelling 481:110367. https://doi.org/10.1016/j.ecolmodel.2023.110367 DOI: https://doi.org/10.1016/j.ecolmodel.2023.110367

Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K. 2019. Cluster: cluster analysis basics and extensions. R package version 2.1.1.

Marzini S, Tasser E, Wellstein C, Albrich K, Rammer W, Mina M. 2024. Future expansion of alpine forest-grassland ecotone under land-use and climate change. Researchsquare (Preprint). https://doi.org/10.21203/rs.3.rs-4789034/v1 DOI: https://doi.org/10.21203/rs.3.rs-4789034/v1

Maxwell CJ, Serra-Diaz JM, Scheller RM, Thompson JR. 2020. Co-designed management scenarios shape the responses of seasonally dry forests to changing climate and fire regimes. Journal of Applied Ecology 57:1328-1340. https://doi.org/10.1111/1365-2664.13630 DOI: https://doi.org/10.1111/1365-2664.13630

McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A, Hurtt GC, Jackson RB, Johnson DJ, Kueppers L, Lichstein JW, Ogle K, Poulter B, Pugh TAM, Seidl R, Turner MG, et al. 2020. Pervasive shifts in forest dynamics in a changing world. Science 368:eaaz9463. https://doi.org/10.1126/science.aaz9463 DOI: https://doi.org/10.1126/science.aaz9463

Millar CI, Stephenson NL. 2015. Temperate forest health in an era of emerging megadisturbance. Science 349:823-826. https://doi.org/10.1126/science.aaa9933 DOI: https://doi.org/10.1126/science.aaa9933

Mina M, Bugmann H, Cordonnier T, Irauschek F, Klopcic M, Pardos M, Cailleret M. 2017. Future ecosystem services from European mountain forests under climate change. Journal of Applied Ecology 54:389-401. https://doi.org/10.1111/1365-2664.12772 DOI: https://doi.org/10.1111/1365-2664.12772

Mina M, Messier C, Duveneck M, Fortin M-J, Aquilué N. 2021. Network analysis can guide resilience-based management in forest landscapes under global change. Ecological Applications 31:e2221. https://doi.org/10.1002/eap.2221 DOI: https://doi.org/10.1002/eap.2221

Mina M, Messier C, Duveneck MJ, Fortin M-J, Aquilué N. 2022. Managing for the unexpected: Building resilient forest landscapes to cope with global change. Global Change Biology 28:4323-4341. https://doi.org/10.1111/gcb.16197 DOI: https://doi.org/10.1111/gcb.16197

Moreno-Maroto JM, Alonso-Azcárate J. 2022. Evaluation of the USDA soil texture triangle through Atterberg limits and an alternative classification system. Applied Clay Science 229:106689. https://doi.org/10.1016/j.clay.2022.106689 DOI: https://doi.org/10.1016/j.clay.2022.106689

Obojes N, Buscarini S, Meurer AK, Tasser E, Oberhuber W, Mayr S, Tappeiner U. 2024. Tree growth at the limits: the response of multiple conifers to opposing climatic constraints along an elevational gradient in the Alps. Frontiers in Forests and Global Change 7. https://doi.org/10.3389/ffgc.2024.1332941 DOI: https://doi.org/10.3389/ffgc.2024.1332941

Pan Y, Birdsey RA, Phillips OL, Houghton RA, Fang J, Kauppi PE, Keith H, Kurz WA, Ito A, Lewis SL, Nabuurs G-J, Shvidenko A, Hashimoto S, Lerink B, Schepaschenko D, Castanho A, Murdiyarso D. 2024. The enduring world forest carbon sink. Nature 631:563-569. https://doi.org/10.1038/s41586-024-07602-x DOI: https://doi.org/10.1038/s41586-024-07602-x

Patacca M, Lindner M, Lucas-Borja ME, Cordonnier T, Fidej G, Gardiner B, Hauf Y, Jasinevičius G, Labonne S, Linkevičius E, Mahnken M, Milanovic S, Nabuurs G-J, Nagel TA, Nikinmaa L, Panyatov M, Bercak R, Seidl R, Ostrogović Sever MZ, Socha J, et al. 2023. Significant increase in natural disturbance impacts on European forests since 1950. Global Change Biology 29:1359-1376. https://doi.org/10.1111/gcb.16531 DOI: https://doi.org/10.1111/gcb.16531

Pircher G, Broll M. 2014. I lariceti di protezione in Val Venosta (bz). Sfida selvicolturale in un contesto di impatti negativi. Proceedings of the Second International Congress of Silviculture, Florence.

Prietzel J, Christophel D. 2014. Organic carbon stocks in forest soils of the German Alps. Geoderma 221-222:28-39. https://doi.org/10.1016/j.geoderma.2014.01.021 DOI: https://doi.org/10.1016/j.geoderma.2014.01.021

R Development Core Team. 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Rammer W, Seidl R. 2015. Coupling human and natural systems: Simulating adaptive management agents in dynamically changing forest landscapes. Global Environmental Change 35:475-485. https://doi.org/10.1016/j.gloenvcha.2015.10.003 DOI: https://doi.org/10.1016/j.gloenvcha.2015.10.003

Rammer W, Thom D, Baumann M, Braziunas K, Dollinger C, Kerber J, Mohr J, Seidl R. 2024. The individual-based forest landscape and disturbance model iLand: Overview, progress, and outlook. Ecological Modelling 495:110785. https://doi.org/10.1016/j.ecolmodel.2024.110785 DOI: https://doi.org/10.1016/j.ecolmodel.2024.110785

Reese GC, Sturtevant BR, Dymond CC, Quigley KM, Duveneck MJ, Lucash MS, Gustafson EJ, Scheller RM, Russell MB, Miranda BR. 2025. Best practices for calibration of forest landscape models using fine-scaled reference information. Canadian Journal of Forest Research 55:1-19. https://doi.org/10.1139/cjfr-2024-0085 DOI: https://doi.org/10.1139/cjfr-2024-0085

Rennenberg H, Dannenmann M. 2015. Nitrogen nutrition of trees in temperate forests - the significance of nitrogen availability in the pedosphere and atmosphere. Forests 6:2820-2835. https://doi.org/10.3390/f6082820 DOI: https://doi.org/10.3390/f6082820

Reyer CPO, Flechsig M, Lasch-Born P, van Oijen M. 2016. Integrating parameter uncertainty of a process-based model in assessments of climate change effects on forest productivity. Climatic Change 137:395-409. https://doi.org/10.1007/s10584-016-1694-1 DOI: https://doi.org/10.1007/s10584-016-1694-1

Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Vacchiano G, Weber P, Wohlgemuth T, Zweifel R, Dobbertin M. 2013. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Global Change Biology 19:229-240. https://doi.org/10.1111/gcb.12038 DOI: https://doi.org/10.1111/gcb.12038

Rousseeuw PJ. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20:53-65. https://doi.org/10.1016/0377-0427(87)90125-7 DOI: https://doi.org/10.1016/0377-0427(87)90125-7

Scheller RM. 2018. The challenges of forest modeling given climate change. Landscape Ecology 33:1481-1488. https://doi.org/10.1007/s10980-018-0689-x DOI: https://doi.org/10.1007/s10980-018-0689-x

Seidl R. 2017. To model or not to model, that is no longer the question for ecologists. Ecosystems 20:222-228. https://doi.org/10.1007/s10021-016-0068-x DOI: https://doi.org/10.1007/s10021-016-0068-x

Seidl R, Albrich K, Erb K, Formayer H, Leidinger D, Leitinger G, Tappeiner U, Tasser E, Rammer W. 2019. What drives the future supply of regulating ecosystem services in a mountain forest landscape? Forest Ecology and Management 445:37-47. https://doi.org/10.1016/j.foreco.2019.03.047 DOI: https://doi.org/10.1016/j.foreco.2019.03.047

Seidl R, Fernandes PM, Fonseca TF, Gillet F, Jonsson AM, Merganicova K, Netherer S, Arpaci A, Bontemps JD, Bugmann H, Gonzalez-Olabarria JR, Lasch P, Meredieu C, Moreira F, Schelhaas MJ, Mohren F. 2011. Modelling natural disturbances in forest ecosystems: a review. Ecological Modelling 222:903-924. https://doi.org/10.1016/j.ecolmodel.2010.09.040 DOI: https://doi.org/10.1016/j.ecolmodel.2010.09.040

Seidl R, Rammer W. 2017. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landscape Ecology 32:1485-1498. https://doi.org/10.1007/s10980-016-0396-4 DOI: https://doi.org/10.1007/s10980-016-0396-4

Seidl R, Rammer W, Blennow K. 2014. Simulating wind disturbance impacts on forest landscapes: Tree-level heterogeneity matters. Environmental Modelling & Software 51:1-11. https://doi.org/10.1016/j.envsoft.2013.09.018 DOI: https://doi.org/10.1016/j.envsoft.2013.09.018

Seidl R, Rammer W, Scheller RM, Spies TA. 2012a. An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecological Modelling 231:87-100. https://doi.org/10.1016/j.ecolmodel.2012.02.015 DOI: https://doi.org/10.1016/j.ecolmodel.2012.02.015

Seidl R, Spies TA, Rammer W, Steel EA, Pabst RJ, Olsen K. 2012b. Multi-scale drivers of spatial variation in old-growth forest carbon density disentangled with LIDAR and an individual-based landscape model. Ecosystems 15:1321-1335. https://doi.org/10.1007/s10021-012-9587-2 DOI: https://doi.org/10.1007/s10021-012-9587-2

Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO. 2017. Forest disturbances under climate change. Nature Climate Change 7:395. https://doi.org/10.1038/nclimate3303 DOI: https://doi.org/10.1038/nclimate3303

Senf C, Seidl R. 2021. Mapping the forest disturbance regimes of Europe. Nature Sustainability 4:63-70. https://doi.org/10.1038/s41893-020-00609-y DOI: https://doi.org/10.1038/s41893-020-00609-y

Shifley SR, He HS, Lischke H, Wang WJ, Jin W, Gustafson EJ, Thompson JR, Thompson FR, Dijak WD, Yang J. 2017. The past and future of modeling forest dynamics: from growth and yield curves to forest landscape models. Landscape Ecology 32:1307-1325. https://doi.org/10.1007/s10980-017-0540-9 DOI: https://doi.org/10.1007/s10980-017-0540-9

Sommerfeld A, Rammer W, Heurich M, Hilmers T, Müller J, Seidl R. 2021. Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe? Journal of Ecology 109:737-749. https://doi.org/10.1111/1365-2745.13502 DOI: https://doi.org/10.1111/1365-2745.13502

Sturtevant BR, Fortin MJ. 2021. Understanding and modeling forest disturbance interactions at the landscape level. Frontiers in Ecology and Evolution 9. https://doi.org/10.3389/fevo.2021.653647 DOI: https://doi.org/10.3389/fevo.2021.653647

Suárez-Muñoz M, Mina M, Salazar PC, Navarro-Cerrillo RM, Quero JL, Bonet-García FJ. 2021. A step-by-step guide to initialize and calibrate landscape models: a case study in the Mediterranean mountains. Frontiers in Ecology and Evolution 9. https://doi.org/10.3389/fevo.2021.653393 DOI: https://doi.org/10.3389/fevo.2021.653393

Thom D, Rammer W, Albrich K, Braziunas KH, Dobor L, Dollinger C, Hansen WD, Harvey BJ, Hlásny T, Hoecker TJ, Honkaniemi J, Keeton WS, Kobayashi Y, Kruszka SS, Mori A, Morris JE, Peters-Collaer S, Ratajczak Z, Simensen T, Storms I, et al. 2024. Parameters of 150 temperate and boreal tree species and provenances for an individual-based forest landscape and disturbance model. Data in Brief 55:110662. https://doi.org/10.1016/j.dib.2024.110662 DOI: https://doi.org/10.1016/j.dib.2024.110662

Thom D, Rammer W, Garstenauer R, Seidl R. 2018. Legacies of past land use have a stronger effect on forest carbon exchange than future climate change in a temperate forest landscape. Biogeosciences 15:5699-5713. https://doi.org/10.5194/bg-15-5699-2018 DOI: https://doi.org/10.5194/bg-15-5699-2018

Thom D, Rammer W, Laux P, Smiatek G, Kunstmann H, Seibold S, Seidl R. 2022. Will forest dynamics continue to accelerate throughout the 21st century in the Northern Alps? Global Change Biology 28:3260-3274. https://doi.org/10.1111/gcb.16133 DOI: https://doi.org/10.1111/gcb.16133

Tognetti R, Smith M, Panzacchi P. 2022. Climate-smart forestry in mountain regions. Springer Nature, Cham, Switzerland. https://doi.org/10.1007/978-3-030-80767-2 DOI: https://doi.org/10.1007/978-3-030-80767-2

Torma C, Giorgi F, Coppola E. 2015. Added value of regional climate modeling over areas characterized by complex terrain-Precipitation over the Alps. Journal of Geophysical Research: Atmospheres 120:3957-3972. https://doi.org/10.1002/2014JD022781 DOI: https://doi.org/10.1002/2014JD022781

Tscholl S, Tasser E, Tappeiner U, Egarter Vigl L. 2021. Coupling solar radiation and cloud cover data for enhanced temperature predictions over topographically complex mountain terrain. International Journal of Climatology n/a. https://doi.org/10.1002/joc.7497 DOI: https://doi.org/10.1002/joc.7497

Vanguelova EI, Bonifacio E, De Vos B, Hoosbeek MR, Berger TW, Vesterdal L, Armolaitis K, Celi L, Dinca L, Kjønaas OJ, Pavlenda P, Pumpanen J, Püttsepp Ü, Reidy B, Simončič P, Tobin B, Zhiyanski M. 2016. Sources of errors and uncertainties in the assessment of forest soil carbon stocks at different scales-review and recommendations. Environmental Monitoring and Assessment 188:630. https://doi.org/10.1007/s10661-016-5608-5 DOI: https://doi.org/10.1007/s10661-016-5608-5

Verkerk PJ, Costanza R, Hetemäki L, Kubiszewski I, Leskinen P, Nabuurs G-J, Potočnik J, Palahí M. 2020. Climate-smart forestry: the missing link. Forest Policy and Economics 115:102164. https://doi.org/10.1016/j.forpol.2020.102164 DOI: https://doi.org/10.1016/j.forpol.2020.102164

Viana-Soto A, Senf C. 2024. The European Forest Disturbance Atlas: a forest disturbance monitoring system using the Landsat archive. Earth Syst. Sci. Data Discuss. 2024:1-42. https://doi.org/10.5194/essd-2024-361 DOI: https://doi.org/10.5194/essd-2024-361

Willis S, Taylor AR, Thom D, D'Orangeville L. 2023. Calibrating a process-based simulation model for the Acadian forest region. The Forestry Chronicle 99:226-240. https://doi.org/10.5558/tfc2023-021 DOI: https://doi.org/10.5558/tfc2023-021

Wilson SM, Pyatt DG, Ray D, Malcolm DC, Connolly T. 2005. Indices of soil nitrogen availability for an ecological site classification of British forests. Forest Ecology and Management 220:51-65. https://doi.org/10.1016/j.foreco.2005.08.004 DOI: https://doi.org/10.1016/j.foreco.2005.08.004

Wohlgemuth T, Hanewinkel M, Seidl R. 2022. Wind disturbances. Pages 173-194 in T. Wohlgemuth, A. Jentsch, and R. Seidl, editors. Disturbance Ecology. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-98756-5_8 DOI: https://doi.org/10.1007/978-3-030-98756-5_8

Zischg AP. 2012. IRKIS - Sistema informativo interregionale per le crisi idrologiche. Interreg Italia-Svizzera 2007-2013. Relazione finale di sintesi. https://www.provinz.bz.it/sicurezza-protezione-civile/protezione-civile/pubblicazioni.asp?publ_action=300&publ_image_id=308434 accessed on 21.11.2024.

Zischg AP, Gubelmann P, Frehner M, Huber B. 2019. High resolution maps of climatological parameters for analyzing the impacts of climatic changes on Swiss forests. Forests 10:617. https://doi.org/10.3390/f10080617 DOI: https://doi.org/10.3390/f10080617

How to Cite

Building virtual forest landscapes to support forest management: the challenge of parameterization. (2025). Forests Monitor, 2(1), 49-96. https://doi.org/10.62320/fm.v2i1.19

Similar Articles

You may also start an advanced similarity search for this article.